Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 8 | Copyright
Geosci. Model Dev., 9, 2893-2908, 2016
https://doi.org/10.5194/gmd-9-2893-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 26 Aug 2016

Methods for assessment of models | 26 Aug 2016

EnKF and 4D-Var data assimilation with chemical transport model BASCOE (version 05.06)

Sergey Skachko et al.
Related authors
Harmonisation and diagnostics of MIPAS ESA CH4 and N2O profiles using data assimilation
Quentin Errera, Simone Ceccherini, Yves Christophe, Simon Chabrillat, Michaela I. Hegglin, Alyn Lambert, Richard Ménard, Piera Raspollini, Sergey Skachko, Michiel van Weele, and Kaley A. Walker
Atmos. Meas. Tech., 9, 5895-5909, https://doi.org/10.5194/amt-9-5895-2016,https://doi.org/10.5194/amt-9-5895-2016, 2016
Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model
S. Skachko, Q. Errera, R. Ménard, Y. Christophe, and S. Chabrillat
Geosci. Model Dev., 7, 1451-1465, https://doi.org/10.5194/gmd-7-1451-2014,https://doi.org/10.5194/gmd-7-1451-2014, 2014
Related subject area
Numerical Methods
Bayesian earthquake dating and seismic hazard assessment using chlorine-36 measurements (BED v1)
Joakim Beck, Sören Wolfers, and Gerald P. Roberts
Geosci. Model Dev., 11, 4383-4397, https://doi.org/10.5194/gmd-11-4383-2018,https://doi.org/10.5194/gmd-11-4383-2018, 2018
Challenges and design choices for global weather and climate models based on machine learning
Peter D. Dueben and Peter Bauer
Geosci. Model Dev., 11, 3999-4009, https://doi.org/10.5194/gmd-11-3999-2018,https://doi.org/10.5194/gmd-11-3999-2018, 2018
The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159-3185, https://doi.org/10.5194/gmd-11-3159-2018,https://doi.org/10.5194/gmd-11-3159-2018, 2018
Symmetric Equations on the Surface of a Sphere as Used by Model GISS:IB
Gary L. Russell, David H. Rind, and Jeffrey Jonas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-126,https://doi.org/10.5194/gmd-2018-126, 2018
Revised manuscript accepted for GMD
faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923-2939, https://doi.org/10.5194/gmd-11-2923-2018,https://doi.org/10.5194/gmd-11-2923-2018, 2018
Cited articles
Anderson, E. and Järvinen, H.: Variational quality control, Q. J. Roy. Meteor. Soc., 125, 697–722, https://doi.org/10.1002/qj.49712555416, 1999.
Anderson, J. L.: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation, Mon. Weather Rev., 140, 2359–2371, https://doi.org/10.1175/MWR-D-11-00013.1, 2012.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., vZabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, Springer Netherlands, Dordrecht, Reidel, https://doi.org/10.1007/1-4020-3824-0, 1986, 2005.
Publications Copernicus
Download
Short summary
In the present work, we performed a comparison of two broadly used data assimilation algorithms, 4D-Var and EnKF, applied to a state-of-the-art atmospheric chemistry transport model. The comparison is carried out using carefully calibrated error statistics. The paper discusses the advantages and disadvantages of each method applied to real-life conditions of a numerical atmospheric chemistry data assimilation.
In the present work, we performed a comparison of two broadly used data assimilation algorithms,...
Citation
Share