Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 9 | Copyright
Geosci. Model Dev., 9, 2999-3026, 2016
https://doi.org/10.5194/gmd-9-2999-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 02 Sep 2016

Development and technical paper | 02 Sep 2016

Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

Gregor J. Schürmann et al.
Related authors
Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance
Thomas Kaminski, Frank Kauker, Leif Toudal Pedersen, Michael Voßbeck, Helmuth Haak, Laura Niederdrenk, Stefan Hendricks, Robert Ricker, Michael Karcher, Hajo Eicken, and Ola Gråbak
The Cryosphere, 12, 2569-2594, https://doi.org/10.5194/tc-12-2569-2018,https://doi.org/10.5194/tc-12-2569-2018, 2018
An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa
Nemesio J. Rodríguez-Fernández, Arnaud Mialon, Stephane Mermoz, Alexandre Bouvet, Philippe Richaume, Ahmad Al Bitar, Amen Al-Yaari, Martin Brandt, Thomas Kaminski, Thuy Le Toan, Yann H. Kerr, and Jean-Pierre Wigneron
Biogeosciences, 15, 4627-4645, https://doi.org/10.5194/bg-15-4627-2018,https://doi.org/10.5194/bg-15-4627-2018, 2018
Understanding terrestrial water storage variations in northern latitudes across scales
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Annette Eicker, Manfred Fink, Christoph Niemann, and Martin Jung
Hydrol. Earth Syst. Sci., 22, 4061-4082, https://doi.org/10.5194/hess-22-4061-2018,https://doi.org/10.5194/hess-22-4061-2018, 2018
Evaluation of simulated biomass damage in forest ecosystems induced by ozone against observation-based estimates
Martina Franz, Rocio Alonso, Almut Arneth, Patrick Büker, Susana Elvira, Giacomo Gerosa, Lisa Emberson, Zhaozhong Feng, Didier Le Thiec, Riccardo Marzuoli, Elina Oksanen, Johan Uddling, Matthew Wilkinson, and Sönke Zaehle
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-358,https://doi.org/10.5194/bg-2018-358, 2018
Manuscript under review for BG
Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavric, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Ullar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-694,https://doi.org/10.5194/acp-2018-694, 2018
Manuscript under review for ACP
Related subject area
Biogeosciences
Parameter calibration in global soil carbon models using surrogate-based optimization
Haoyu Xu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue
Geosci. Model Dev., 11, 3027-3044, https://doi.org/10.5194/gmd-11-3027-2018,https://doi.org/10.5194/gmd-11-3027-2018, 2018
Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle
Geosci. Model Dev., 11, 2789-2812, https://doi.org/10.5194/gmd-11-2789-2018,https://doi.org/10.5194/gmd-11-2789-2018, 2018
ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition
Ye Huang, Bertrand Guenet, Philippe Ciais, Ivan A. Janssens, Jennifer L. Soong, Yilong Wang, Daniel Goll, Evgenia Blagodatskaya, and Yuanyuan Huang
Geosci. Model Dev., 11, 2111-2138, https://doi.org/10.5194/gmd-11-2111-2018,https://doi.org/10.5194/gmd-11-2111-2018, 2018
Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil
Fabiola Murguia-Flores, Sandra Arndt, Anita L. Ganesan, Guillermo Murray-Tortarolo, and Edward R. C. Hornibrook
Geosci. Model Dev., 11, 2009-2032, https://doi.org/10.5194/gmd-11-2009-2018,https://doi.org/10.5194/gmd-11-2009-2018, 2018
Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, and Marko Scholze
Geosci. Model Dev., 11, 1517-1536, https://doi.org/10.5194/gmd-11-1517-2018,https://doi.org/10.5194/gmd-11-1517-2018, 2018
Cited articles
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, 26, 6801–6843, 2013.
Bacour, C., Peylin, P., MacBean, N., Rayner, P. J., Delage, F., Chevallier, F., Weiss, M., Demarty, J., Santaren, D., Baret, F., Berveiller, D., Dufrêne, E., and Prunet, P.: Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model, J. Geophys. Res.-Biogeo., 120, 1839–1857, https://doi.org/10.1002/2015JG002966, 2015.
Booth, B. B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox, P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R., and Lloyd, J.: High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002, 2012.
Brooks, A. and Farquhar, G.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light, Planta, 165, 397–406, https://doi.org/10.1007/BF00392238, 1985.
Publications Copernicus
Download
Short summary
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS). The system improves the modelled carbon cycle of the terrestrial biosphere by systematically confronting (or assimilating) the model with observations of atmospheric CO2 and fractions of absorbed photosynthetically active radiation. Jointly assimilating both data streams outperforms the single-data stream experiments, thus showing the value of a multi-data stream assimilation.
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS). The...
Citation
Share