Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 10 | Copyright
Geosci. Model Dev., 9, 3517-3531, 2016
https://doi.org/10.5194/gmd-9-3517-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 30 Sep 2016

Model description paper | 30 Sep 2016

Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

Matthias Sinnesael et al.
Viewed
Total article views: 1,362 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
917 353 92 1,362 317 69 90
  • HTML: 917
  • PDF: 353
  • XML: 92
  • Total: 1,362
  • Supplement: 317
  • BibTeX: 69
  • EndNote: 90
Views and downloads (calculated since 31 May 2016)
Cumulative views and downloads (calculated since 31 May 2016)
Cited
Saved (final revised paper)
No saved metrics found.
Saved (discussion paper)
No saved metrics found.
Discussed (final revised paper)
No discussed metrics found.
Discussed (discussion paper)
No discussed metrics found.
Latest update: 17 Sep 2018
Publications Copernicus
Download
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This...
Citation
Share