Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 10 | Copyright

Special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental...

Geosci. Model Dev., 9, 3685-3697, 2016
https://doi.org/10.5194/gmd-9-3685-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 18 Oct 2016

Model experiment description paper | 18 Oct 2016

The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6

Nathan P. Gillett et al.
Related authors
Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571-583, https://doi.org/10.5194/gmd-10-571-2017,https://doi.org/10.5194/gmd-10-571-2017, 2017
Related subject area
Climate and Earth System Modeling
Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291-4316, https://doi.org/10.5194/gmd-11-4291-2018,https://doi.org/10.5194/gmd-11-4291-2018, 2018
BGC-val: a model- and grid-independent Python toolkit to evaluate marine biogeochemical models
Lee de Mora, Andrew Yool, Julien Palmieri, Alistair Sellar, Till Kuhlbrodt, Ekaterina Popova, Colin Jones, and J. Icarus Allen
Geosci. Model Dev., 11, 4215-4240, https://doi.org/10.5194/gmd-11-4215-2018,https://doi.org/10.5194/gmd-11-4215-2018, 2018
An EC-Earth coupled atmosphere–ocean single-column model (AOSCM.v1_EC-Earth3) for studying coupled marine and polar processes
Kerstin Hartung, Gunilla Svensson, Hamish Struthers, Anna-Lena Deppenmeier, and Wilco Hazeleger
Geosci. Model Dev., 11, 4117-4137, https://doi.org/10.5194/gmd-11-4117-2018,https://doi.org/10.5194/gmd-11-4117-2018, 2018
Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0
Gautam Bisht, William J. Riley, Glenn E. Hammond, and David M. Lorenzetti
Geosci. Model Dev., 11, 4085-4102, https://doi.org/10.5194/gmd-11-4085-2018,https://doi.org/10.5194/gmd-11-4085-2018, 2018
Compact Modeling Framework v3.0 for high-resolution global ocean–ice–atmosphere models
Vladimir V. Kalmykov, Rashit A. Ibrayev, Maxim N. Kaurkin, and Konstantin V. Ushakov
Geosci. Model Dev., 11, 3983-3997, https://doi.org/10.5194/gmd-11-3983-2018,https://doi.org/10.5194/gmd-11-3983-2018, 2018
Cited articles
Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L.: Quantifying the uncertainty in forecasts of anthropogenic climate change, Nature, 407, 617–620, https://doi.org/10.1038/35036559, 2000.
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Barnett, T., Zwiers, F., Hegerl, G., Allen, M., Crowley, T., Gillett, N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Stott, P., Taylor, K., and Tett, S.: Detecting and attributing external influences on the climate system: A review of recent advances, J. Climate, 18, 1291–1314, 2005.
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N. P., Gutzler, D., Hansingo, K., Hegerl, G., Hu,Y., Jain, S., Mokhov, I. I., Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and Attribution of Climate Change: from Global to Regional, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K., and Zwiers, F.: The Decadal Climate Prediction Project, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-78, in review, 2016.
Publications Copernicus
Special issue
Download
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Detection and attribution of climate change is the process of determining the causes of observed...
Citation
Share