Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 11
Geosci. Model Dev., 9, 3919–3932, 2016
https://doi.org/10.5194/gmd-9-3919-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 3919–3932, 2016
https://doi.org/10.5194/gmd-9-3919-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 02 Nov 2016

Development and technical paper | 02 Nov 2016

A method for retrieving clouds with satellite infrared radiances using the particle filter

Dongmei Xu et al.
Related authors  
Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals
Young-Hee Ryu, Alma Hodzic, Jerome Barre, Gael Descombes, and Patrick Minnis
Atmos. Chem. Phys., 18, 7509–7525, https://doi.org/10.5194/acp-18-7509-2018,https://doi.org/10.5194/acp-18-7509-2018, 2018
Short summary
Generalized background error covariance matrix model (GEN_BE v2.0)
G. Descombes, T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré
Geosci. Model Dev., 8, 669–696, https://doi.org/10.5194/gmd-8-669-2015,https://doi.org/10.5194/gmd-8-669-2015, 2015
A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation
S. Metref, E. Cosme, C. Snyder, and P. Brasseur
Nonlin. Processes Geophys., 21, 869–885, https://doi.org/10.5194/npg-21-869-2014,https://doi.org/10.5194/npg-21-869-2014, 2014
Related subject area  
Atmospheric Sciences
Validation of lake surface state in the HIRLAM v.7.4 numerical weather prediction model against in situ measurements in Finland
Laura Rontu, Kalle Eerola, and Matti Horttanainen
Geosci. Model Dev., 12, 3707–3723, https://doi.org/10.5194/gmd-12-3707-2019,https://doi.org/10.5194/gmd-12-3707-2019, 2019
Short summary
An optimization for reducing the size of an existing urban-like monitoring network for retrieving an unknown point source emission
Hamza Kouichi, Pierre Ngae, Pramod Kumar, Amir-Ali Feiz, and Nadir Bekka
Geosci. Model Dev., 12, 3687–3705, https://doi.org/10.5194/gmd-12-3687-2019,https://doi.org/10.5194/gmd-12-3687-2019, 2019
Short summary
Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02
Katherine R. Travis and Daniel J. Jacob
Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019,https://doi.org/10.5194/gmd-12-3641-2019, 2019
Short summary
The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0)
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019,https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019,https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Cited articles  
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, Geophys. Res.-Atmos., 103, 32141–32157, 1998.
Auligné, T.: Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments, Mon. Weather Rev., 142, 4383–4398, 2014a.
Auligné, T.: Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments, Mon. Weather Rev., 142, 4399–4415, 2014b.
Auligné, T., Lorenc, A., Michel, Y., Montmerle, T., Jones, A., Hu, M., and Dudhia, J.: Toward a New Cloud Analysis and Prediction System, B. Am. Meteorol. Soc., 92, 207–210, 2011.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., and Staelin, D. H.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, Geosci. Remote Sens., 41, 253–264, 2003.
Publications Copernicus
Download
Short summary
This study proposed a new cloud retrieval method based on the particle filter (PF). The PF cloud retrieval method is compared with the Multivariate and Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of Infrared radiances on multi-sensors onboard both GOES and MODIS, respectively.
This study proposed a new cloud retrieval method based on the particle filter (PF). The PF cloud...
Citation