Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 11
Geosci. Model Dev., 9, 3919-3932, 2016
https://doi.org/10.5194/gmd-9-3919-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 3919-3932, 2016
https://doi.org/10.5194/gmd-9-3919-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 02 Nov 2016

Development and technical paper | 02 Nov 2016

A method for retrieving clouds with satellite infrared radiances using the particle filter

Dongmei Xu et al.
Related authors  
Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals
Young-Hee Ryu, Alma Hodzic, Jerome Barre, Gael Descombes, and Patrick Minnis
Atmos. Chem. Phys., 18, 7509-7525, https://doi.org/10.5194/acp-18-7509-2018,https://doi.org/10.5194/acp-18-7509-2018, 2018
Short summary
Generalized background error covariance matrix model (GEN_BE v2.0)
G. Descombes, T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré
Geosci. Model Dev., 8, 669-696, https://doi.org/10.5194/gmd-8-669-2015,https://doi.org/10.5194/gmd-8-669-2015, 2015
A non-Gaussian analysis scheme using rank histograms for ensemble data assimilation
S. Metref, E. Cosme, C. Snyder, and P. Brasseur
Nonlin. Processes Geophys., 21, 869-885, https://doi.org/10.5194/npg-21-869-2014,https://doi.org/10.5194/npg-21-869-2014, 2014
Related subject area  
Atmospheric Sciences
DATeS: a highly extensible data assimilation testing suite v1.0
Ahmed Attia and Adrian Sandu
Geosci. Model Dev., 12, 629-649, https://doi.org/10.5194/gmd-12-629-2019,https://doi.org/10.5194/gmd-12-629-2019, 2019
Short summary
Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541-579, https://doi.org/10.5194/gmd-12-541-2019,https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
A hydrological cycle model for the Globally Resolved Energy Balance (GREB) model v1.0
Christian Stassen, Dietmar Dommenget, and Nicholas Loveday
Geosci. Model Dev., 12, 425-440, https://doi.org/10.5194/gmd-12-425-2019,https://doi.org/10.5194/gmd-12-425-2019, 2019
Short summary
The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1
Sandra L. LeGrand, Chris Polashenski, Theodore W. Letcher, Glenn A. Creighton, Steven E. Peckham, and Jeffrey D. Cetola
Geosci. Model Dev., 12, 131-166, https://doi.org/10.5194/gmd-12-131-2019,https://doi.org/10.5194/gmd-12-131-2019, 2019
Short summary
Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02
Yingying Yan, David Cabrera-Perez, Jintai Lin, Andrea Pozzer, Lu Hu, Dylan B. Millet, William C. Porter, and Jos Lelieveld
Geosci. Model Dev., 12, 111-130, https://doi.org/10.5194/gmd-12-111-2019,https://doi.org/10.5194/gmd-12-111-2019, 2019
Short summary
Cited articles  
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, Geophys. Res.-Atmos., 103, 32141–32157, 1998.
Auligné, T.: Multivariate minimum residual method for cloud retrieval. Part I: Theoretical aspects and simulated observation experiments, Mon. Weather Rev., 142, 4383–4398, 2014a.
Auligné, T.: Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments, Mon. Weather Rev., 142, 4399–4415, 2014b.
Auligné, T., Lorenc, A., Michel, Y., Montmerle, T., Jones, A., Hu, M., and Dudhia, J.: Toward a New Cloud Analysis and Prediction System, B. Am. Meteorol. Soc., 92, 207–210, 2011.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., and Staelin, D. H.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, Geosci. Remote Sens., 41, 253–264, 2003.
Publications Copernicus
Download
Short summary
This study proposed a new cloud retrieval method based on the particle filter (PF). The PF cloud retrieval method is compared with the Multivariate and Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of Infrared radiances on multi-sensors onboard both GOES and MODIS, respectively.
This study proposed a new cloud retrieval method based on the particle filter (PF). The PF cloud...
Citation