Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 11
Geosci. Model Dev., 9, 3975–3991, 2016
https://doi.org/10.5194/gmd-9-3975-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 3975–3991, 2016
https://doi.org/10.5194/gmd-9-3975-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 09 Nov 2016

Model description paper | 09 Nov 2016

Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling

Massimiliano Alvioli et al.
Related authors  
A strategy for GIS-based 3-D slope stability modelling over large areas
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014,https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Non-susceptible landslide areas in Italy and in the Mediterranean region
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014,https://doi.org/10.5194/nhess-14-2215-2014, 2014
Related subject area  
Earth and Space Science Informatics
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019,https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019,https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019,https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Global hydro-climatic biomes identified via multitask learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018,https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Cited articles  
Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, https://doi.org/10.1016/j.geomorph.2013.12.039, 2014.
Aplin, P. and Smith, G.: Advances in object-based image classification, in: Remote Sensing and Spatial Information Sciences XXXVII, Vol. B7 of The International Archives of the Photogrammetry, 725–728, Bejing, China, 2008.
Brabb, E. E.: Innovative approaches to landslide hazard mapping, in: Proceedings 4th International Symposium on Landslides (Toronto), Vol. 1, 307–324, Canadian geotechnical Society, Toronto, 1984.
Budimir, M., Atkinson, P., and Lewis, H.: A systematic review of landslide probability mapping using logistic regression, Landslides, 12, 419–436, https://doi.org/10.1007/s10346-014-0550-5, 2015.
Cardinali, M., Antonini, G., Reichenbach, P., and Fausto, G.: Photo-geological and landslide inventory map for the Upper Tiber River basin – CNR GNDCI, publication no. 2116, scale 1 : 100,000, available at: http://geomorphology.irpi.cnr.it/publications/repository/public/maps/UTR-data.jpg/ (last access: 3 November 2016), 2001.
Publications Copernicus
Download
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Slope units are morphological mapping units bounded by drainage and divide lines that maximize...
Citation