Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 9, 4019-4028, 2016
https://doi.org/10.5194/gmd-9-4019-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model experiment description paper
09 Nov 2016
nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0)
Peter Good1, Timothy Andrews1, Robin Chadwick1, Jean-Louis Dufresne3, Jonathan M. Gregory2,1, Jason A. Lowe1, Nathalie Schaller4, and Hideo Shiogama5 1Met Office Hadley Centre, Exeter, UK
2NCAS-Climate, University of Reading, Reading, UK
3Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Paris, France
4Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
5Climate Risk Assessment Section, Centre for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
Abstract. nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change – i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1).

nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio – while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up–ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding gained will help interpret the spread in policy-relevant scenario projections.

Here we outline the basic physical principles behind nonlinMIP, and the method of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the experimental design, and finally some analysis principles. The test of traceability from abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 and CMIP6 DECK protocols.


Citation: Good, P., Andrews, T., Chadwick, R., Dufresne, J.-L., Gregory, J. M., Lowe, J. A., Schaller, N., and Shiogama, H.: nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0), Geosci. Model Dev., 9, 4019-4028, https://doi.org/10.5194/gmd-9-4019-2016, 2016.
Publications Copernicus
Download
Short summary
The nonlinMIP model intercomparison project is described. nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: 1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or 2) to understand state dependence of climate responses.
The nonlinMIP model intercomparison project is described. nonlinMIP provides experiments that...
Share