Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 11
Geosci. Model Dev., 9, 4071-4085, 2016
https://doi.org/10.5194/gmd-9-4071-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 4071-4085, 2016
https://doi.org/10.5194/gmd-9-4071-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 14 Nov 2016

Model description paper | 14 Nov 2016

PhytoSFDM version 1.0.0: Phytoplankton Size and Functional Diversity Model

Esteban Acevedo-Trejos et al.
Viewed  
Total article views: 1,137 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
647 422 68 1,137 103 97
  • HTML: 647
  • PDF: 422
  • XML: 68
  • Total: 1,137
  • BibTeX: 103
  • EndNote: 97
Views and downloads (calculated since 30 May 2016)
Cumulative views and downloads (calculated since 30 May 2016)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 24 Jun 2019
Publications Copernicus
Download
Short summary
Marine phytoplankton plays a prominent role in regulating Earth’s climate. Numerical models are important tools that help us investigate the interactions between these microbes and their environment. We proposed PhytoSFDM as an open-source model to quantify size structure and functional diversity of marine phytoplankton communities. This tool allows us, in a manageable and computationally efficient way, to study patterns in planktonic ecosystems and their feedbacks with a changing environment.
Marine phytoplankton plays a prominent role in regulating Earth’s climate. Numerical models...
Citation