Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 11 | Copyright

Special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental...

Geosci. Model Dev., 9, 4185-4208, 2016
https://doi.org/10.5194/gmd-9-4185-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 22 Nov 2016

Model experiment description paper | 22 Nov 2016

High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

Reindert J. Haarsma et al.
Related authors
Resolution-dependence of future European soil moisture droughts
Eveline C. van der Linden, Reindert J. Haarsma, and Gerard van der Schrier
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-226,https://doi.org/10.5194/hess-2018-226, 2018
Manuscript under review for HESS
Related subject area
Climate and Earth System Modeling
Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types
Anna B. Harper, Andrew J. Wiltshire, Peter M. Cox, Pierre Friedlingstein, Chris D. Jones, Lina M. Mercado, Stephen Sitch, Karina Williams, and Carolina Duran-Rojas
Geosci. Model Dev., 11, 2857-2873, https://doi.org/10.5194/gmd-11-2857-2018,https://doi.org/10.5194/gmd-11-2857-2018, 2018
OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649-2689, https://doi.org/10.5194/gmd-11-2649-2018,https://doi.org/10.5194/gmd-11-2649-2018, 2018
Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0
Timofei Sukhodolov, Jian-Xiong Sheng, Aryeh Feinberg, Bei-Ping Luo, Thomas Peter, Laura Revell, Andrea Stenke, Debra K. Weisenstein, and Eugene Rozanov
Geosci. Model Dev., 11, 2633-2647, https://doi.org/10.5194/gmd-11-2633-2018,https://doi.org/10.5194/gmd-11-2633-2018, 2018
Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563-2579, https://doi.org/10.5194/gmd-11-2563-2018,https://doi.org/10.5194/gmd-11-2563-2018, 2018
The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5
Tatiana Matveeva, Daria Gushchina, and Boris Dewitte
Geosci. Model Dev., 11, 2373-2392, https://doi.org/10.5194/gmd-11-2373-2018,https://doi.org/10.5194/gmd-11-2373-2018, 2018
Cited articles
Baatsen, M., Haarsma, R. J., Van Delden, A. J., and De Vries, H.: Severe autumn storms in future western Europe with a warmer Atlantic ocean, Clim. Dynam., 45, 949–964, https://doi.org/10.1007/s00382-014-2329-8, 2015.
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C. E., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014.
Barnes, E. A. and Polvani, L.: Response of the midlatitude jets, and of their variability, to increased greenhosuse gases in the CMIP5 models, J. Climate, 26, 7117–7135, 2013.
Barsugli, J. and Battisti, D. S.: The basic effects of atmosphere-ocean thermal coupling on midlatitude variability, J. Climate, 55, 477–493, 1998.
Bell, R. J., Strachan, J., Vidale, P. L., Hodges, K. I., and Roberts, M.: Response of tropical cyclones to idealized climate change experiments in a global high resolution coupled general circulation model, J. Climate, 26, 7966–7980, 2013.
Publications Copernicus
Special issue
Download
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Recent progress in computing power has enabled climate models to simulate more processes in...
Citation
Share