Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 2 | Copyright
Geosci. Model Dev., 9, 607-632, 2016
https://doi.org/10.5194/gmd-9-607-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 12 Feb 2016

Development and technical paper | 12 Feb 2016

Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

Kai Zhang1, Chun Zhao1, Hui Wan1, Yun Qian1, Richard C. Easter1, Steven J. Ghan1, Koichi Sakaguchi1, and Xiaohong Liu2 Kai Zhang et al.
  • 1Pacific Northwest National Laboratory, Richland, WA, USA
  • 2Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA

Abstract. This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities.

In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.

The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3%. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7% increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50% compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.

Download & links
Publications Copernicus
Download
Short summary
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account the impact of unresolved variability of surface wind speed on sea salt and dust emissions. Simulations show that sub-grid wind variability has relatively small impacts on the global mean sea salt emissions, but considerable influence on dust emissions. Dry convective eddies and mesoscale flows associated with complex topography are the major causes of dust emission enhancement.
A sub-grid treatment based on Weibull distribution is introduced to CAM5 to take into account...
Citation
Share