Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 9, issue 2
Geosci. Model Dev., 9, 875-898, 2016
https://doi.org/10.5194/gmd-9-875-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 875-898, 2016
https://doi.org/10.5194/gmd-9-875-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 01 Mar 2016

Methods for assessment of models | 01 Mar 2016

Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals

K. F. Boersma et al.
Related authors  
Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations
Aristeidis K. Georgoulias, Ronald J. van der A, Piet Stammes, K. Folkert Boersma, and Henk J. Eskes
Atmos. Chem. Phys., 19, 6269-6294, https://doi.org/10.5194/acp-19-6269-2019,https://doi.org/10.5194/acp-19-6269-2019, 2019
Short summary
European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone
Auke J. Visser, K. Folkert Boersma, Laurens N. Ganzeveld, and Maarten C. Krol
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-295,https://doi.org/10.5194/acp-2019-295, 2019
Manuscript under review for ACP
Short summary
Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1-21, https://doi.org/10.5194/amt-12-1-2019,https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project
K. Folkert Boersma, Henk J. Eskes, Andreas Richter, Isabelle De Smedt, Alba Lorente, Steffen Beirle, Jos H. G. M. van Geffen, Marina Zara, Enno Peters, Michel Van Roozendael, Thomas Wagner, Joannes D. Maasakkers, Ronald J. van der A, Joanne Nightingale, Anne De Rudder, Hitoshi Irie, Gaia Pinardi, Jean-Christopher Lambert, and Steven C. Compernolle
Atmos. Meas. Tech., 11, 6651-6678, https://doi.org/10.5194/amt-11-6651-2018,https://doi.org/10.5194/amt-11-6651-2018, 2018
Short summary
The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI
Alba Lorente, K. Folkert Boersma, Piet Stammes, L. Gijsbert Tilstra, Andreas Richter, Huan Yu, Said Kharbouche, and Jan-Peter Muller
Atmos. Meas. Tech., 11, 4509-4529, https://doi.org/10.5194/amt-11-4509-2018,https://doi.org/10.5194/amt-11-4509-2018, 2018
Short summary
Related subject area  
Atmospheric Sciences
HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional module
Marc Guevara, Carles Tena, Manuel Porquet, Oriol Jorba, and Carlos Pérez García-Pando
Geosci. Model Dev., 12, 1885-1907, https://doi.org/10.5194/gmd-12-1885-2019,https://doi.org/10.5194/gmd-12-1885-2019, 2019
Short summary
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833-1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1)
Vincent Huijnen, Andrea Pozzer, Joaquim Arteta, Guy Brasseur, Idir Bouarar, Simon Chabrillat, Yves Christophe, Thierno Doumbia, Johannes Flemming, Jonathan Guth, Béatrice Josse, Vlassis A. Karydis, Virginie Marécal, and Sophie Pelletier
Geosci. Model Dev., 12, 1725-1752, https://doi.org/10.5194/gmd-12-1725-2019,https://doi.org/10.5194/gmd-12-1725-2019, 2019
Short summary
Evaluating the Met Office Unified Model land surface temperature in Global Atmosphere/Land 3.1 (GA/L3.1), Global Atmosphere/Land 6.1 (GA/L6.1) and limited area 2.2 km configurations
Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks
Geosci. Model Dev., 12, 1703-1724, https://doi.org/10.5194/gmd-12-1703-2019,https://doi.org/10.5194/gmd-12-1703-2019, 2019
Short summary
The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation
Ina Tegen, David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Isabelle Bey, Nick Schutgens, Philip Stier, Duncan Watson-Parris, Tanja Stanelle, Hauke Schmidt, Sebastian Rast, Harri Kokkola, Martin Schultz, Sabine Schroeder, Nikos Daskalakis, Stefan Barthel, Bernd Heinold, and Ulrike Lohmann
Geosci. Model Dev., 12, 1643-1677, https://doi.org/10.5194/gmd-12-1643-2019,https://doi.org/10.5194/gmd-12-1643-2019, 2019
Short summary
Cited articles  
Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2-O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004.
Barkley, M. P., De Smedt, I., Van Roozendael, M., Kurosu, T. P., Chance, K., Arneth, A., Hagberg, D., Guenther, A., Paulot, F., Marais, E., and Mao, J.: Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns, J. Geophys. Res., 118, 6849–6868, https://doi.org/10.1002/jgrd.50552, 2013.
Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003.
Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011.
Belmonte Rivas, M., Veefkind, P., Eskes, H., and Levelt, P.: OMI tropospheric NO2 profiles from cloud slicing: constraints on surface emissions, convective transport and lightning NOx, Atmos. Chem. Phys., 15, 13519–13553, https://doi.org/10.5194/acp-15-13519-2015, 2015.
Publications Copernicus
Download
Short summary
Satellite measurements of pollutants and greenhouse gases are useful to test and improve atmospheric models. But this requires that modellers account for the spatial and temporal representativeness and the vertical sensitivity of the satellite measurements. This paper provides guidelines on how to carry out a faithful model-satellite comparison for species such as nitrogen dioxide, sulfur dioxide, and formaldehyde that play a key role in air pollution studies.
Satellite measurements of pollutants and greenhouse gases are useful to test and improve...
Citation