Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 2
Geosci. Model Dev., 9, 899–914, 2016
https://doi.org/10.5194/gmd-9-899-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 899–914, 2016
https://doi.org/10.5194/gmd-9-899-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 01 Mar 2016

Model description paper | 01 Mar 2016

UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations

David Topping et al.
Related authors  
A predictive group-contribution model for the viscosity of aqueous organic aerosol
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-699,https://doi.org/10.5194/acp-2019-699, 2019
Manuscript under review for ACP
Short summary
Modelling the effect of condensed-phase diffusion on the homogeneous nucleation of ice in supercooled water
Kathryn Fowler, Paul Connolly, and David Topping
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-401,https://doi.org/10.5194/acp-2019-401, 2019
Manuscript under review for ACP
Short summary
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
Thomas J. Bannan, Michael Le Breton, Michael Priestley, Stephen D. Worrall, Asan Bacak, Nicholas A. Marsden, Archit Mehra, Julia Hammes, Mattias Hallquist, M. Rami Alfarra, Ulrich K. Krieger, Jonathan P. Reid, John Jayne, Wade Robinson, Gordon McFiggans, Hugh Coe, Carl J. Percival, and Dave Topping
Atmos. Meas. Tech., 12, 1429–1439, https://doi.org/10.5194/amt-12-1429-2019,https://doi.org/10.5194/amt-12-1429-2019, 2019
Short summary
Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom
Elizabeth Forde, Martin Gallagher, Virginia Foot, Roland Sarda-Esteve, Ian Crawford, Paul Kaye, Warren Stanley, and David Topping
Atmos. Chem. Phys., 19, 1665–1684, https://doi.org/10.5194/acp-19-1665-2019,https://doi.org/10.5194/acp-19-1665-2019, 2019
Short summary
Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018,https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary
Related subject area  
Atmospheric Sciences
The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0)
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019,https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019,https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Assessment of wavelet-based spatial verification by means of a stochastic precipitation model (wv_verif v0.1.0)
Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs
Geosci. Model Dev., 12, 3401–3418, https://doi.org/10.5194/gmd-12-3401-2019,https://doi.org/10.5194/gmd-12-3401-2019, 2019
Short summary
The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg
Matthias Karl, Sam-Erik Walker, Sverre Solberg, and Martin O. P. Ramacher
Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019,https://doi.org/10.5194/gmd-12-3357-2019, 2019
Short summary
The FireWork v2.0 air quality forecast system with biomass burning emissions from the Canadian Forest Fire Emissions Prediction System v2.03
Jack Chen, Kerry Anderson, Radenko Pavlovic, Michael D. Moran, Peter Englefield, Dan K. Thompson, Rodrigo Munoz-Alpizar, and Hugo Landry
Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019,https://doi.org/10.5194/gmd-12-3283-2019, 2019
Short summary
Cited articles  
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Barley, M., Topping, D. O., Jenkin, M. E., and McFiggans, G.: Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water, Atmos. Chem. Phys., 9, 2919–2932, https://doi.org/10.5194/acp-9-2919-2009, 2009.
Barley, M. H., Topping, D., Lowe, D., Utembe, S., and McFiggans, G.: The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties – Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation, Atmos. Chem. Phys., 11, 13145–13159, https://doi.org/10.5194/acp-11-13145-2011, 2011.
Barley, M. H., Topping, D. O., and McFiggans, G.: Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science, J. Phys. Chem. A, 117, 3428–3441, 2013.
Bas, G. L.: The Molecular Volume of Liquid Chemical Compounds, Longmans, New York, NY, USA, 1915.
Publications Copernicus
Download
Short summary
In this paper we describe the development and application of a new web-based and open-source facility, UManSysProp (http://umansysprop .seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential.
In this paper we describe the development and application of a new web-based and open-source...
Citation